4.1. Application of Magnetic Field

The objective is to create a magnetic field by driving a large current pulse through a rectangular solenoid coincident in time with the application of the strain field. Referring to Figure 4.2, the operation is as follows. A large electrolytic capacitor, C, is charged to a predetermined voltage, \mathcal{E}_0 . At a predetermined time prior to application of the strain field the silicon control rectifier is triggered. Capacitor C then discharges via high voltage cables through the solenoid at a rate determined by the L, R, and C of the circuit. A current pulse of the form

$$I(t) = \frac{\xi_0}{\omega L} e^{-\beta t} \sinh_{\omega} t$$

is obtained where

$$\beta = \frac{R}{2L}$$

and

$$\omega = \left(\frac{R^2}{4L^2} - \frac{1}{LC}\right)^{1/2}.$$

Preadjustment of \mathcal{E}_0 , R, and L allows a predetermined current \mathbf{I}_{\max} to be attained at a predetermined time τ_{m} governed by

$$tanh_{\omega\tau_m} = \frac{\omega}{\beta}$$
.

This time is adjusted so that the shock wave passes through the specimen when I = I_{max} . The transit time is approximately 0.25 μs . The current is essentially steady during this time. The time variation in the neighborhood of τ_m is

$$\frac{\Delta I}{I} \simeq \frac{1}{2LC} (t - \tau_m)^2$$
.

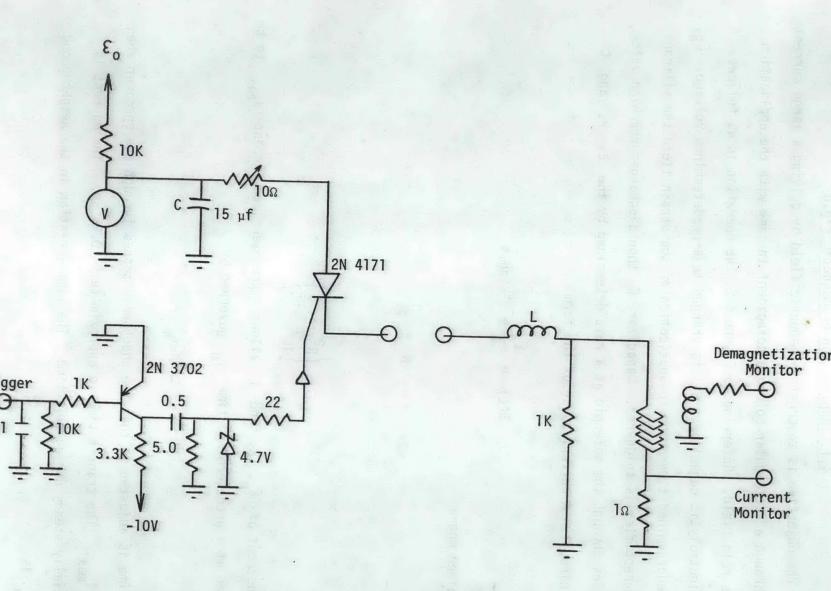


Fig. 4.2.--Current supply and target circuit.